Carnot Innovations

AI Powered Building Optimization Platform

Reducing operational overheads in commercial buildings through AI analytics and controls

BUSINESS OPPORTUNITY

We are an advanced energy utilization and maintenance platform for commercial buildings

Existing energy management and maintenance practices are inefficient and can waste up to **20%** of building operational budgets, globally this incurs over **20B** USD every year!

 \otimes

(X)

Skilled Labor Intensive Skilled labor is required to perform routine checks every month.

Critical Faults are not dealt with in time Small faults such as pump failures can have a knock-on effect on entire plant.

Faults stays Undetected for Weeks Causing higher energy consumption in addition to breakdowns

Unadaptive operations with poor operational efficiency.

Data	Driven	Smart
Build	ing	

Data driven approach generates unique insights through millions of data points.

Our process

We deliver data-driven actionable Insights & performs automated controls to help optimize maintenance and energy costs

Data-Driven Operation in Smart Building

From Descriptive to Prescriptive Analytics

Data Driven Optimized Controls Anomaly Detection Algorithm

Rich Data Visualization

Diagnostics with advanced visualization

Rich Visualization and insights for better diagnostics

Color indicates CO2 values in ppm

Predictive Fault Diagnostics

We identify, predict and resolve hidden faults before they lead to severe equipment failures

Unsupervised machine learning based fault diagnostics

Logic based Fault Detection & Diagnostics

Fai	III Detection				
201	406 30 23 45:00 2019 12 31 23:4				
Equi					
Faul					
		Severity [®]			
—	Chiller Condenser Supply Return temperature difference is less than 4.5 Deg G	high			
	Chiller Condenser differential pressure < 2.5 psi for 2 hrs or more when chiller is on	Noh			
		Nigh			
	CHWR_Temp Sensors flatlined				
	CHWS_Temp Sensors flatlined	low			
	Chilled Water differential pressure is < than 1.45 psi for 2 hours or more when Chiller is numling	Low			
	Condenser differential pressure sensors flatlined	I		2019-12-16720:00:00	
	Differential pressure sensors flatlined	low			
	Chilled Water differential pressure > 3 psi when chiller is off for a period of 2 hrs or more	medium			
	Efficiency is more than 0.58 Kw per ton (COP of 6) for a period of more than 2 hours	medium			
	VIID feedback and VIID control differ more than 4% for a period of 2 hours	medium			
	When pump is naming, VSD control and VSD feedback differ more than 4%	medium			
			Rows per pag	e: All 🖵 1-12 of 12	< >

Notifications and real time alerts

											Å ⁹⁷ E	3	2	
Notifications	UNICK:	LOW	MEXAM		HGH	OPECA.			_					
10686	1366	342	693	3	33									
						HT CHTCH/HOUMEDIM		27 ANOMALY					E.	Ł DOWNLOAD
		Equipment	Equipment Type			Description							Acknowledged	
Terminal Equipment overcooling		612,8/_VAV,F09		operation	652-6F	Terminal equipment overcooling (+ 14 degree C for 2 hours)			1. Check & VXV Damper is stuck 2. Check Temperature sensor accuracy 3. Check zone temperature control logic	2020-08-31703-00-00	2020-08-31703-30.00	-refurn		iê⊭e
PQM line A current THD too high		ES2_8F_POM_Buswey_28E1_100A_A		erergy	652-6F	PQM THD Current A > 60% for 2 hours or more when Active Power > 51	en .		1. Check load downstream 2. Check integrity of supply upstream.	2020-08-31T02-45-00	2020-09-31702-45:00			iew
PQM power spike		ES1_0F_PQM_homey_18L1		energy		PQM power has increased sharply & dropped down by 100% within 30	minutes interval.		1. Check voltage and electrical stabilization system. 2. Check load downstream. 3. Check electrical susply.	2020-08-20722-30-00	2020-08-31703:15:00			i₿⊭
PQM line C current THD too high		E81_111_PQM_Reaway_18L2		energy		PQM THD Current C + 60% for 2 hours or more when Active Power + 51	aw		1. Check load downstream 2. Check integrity of supply upstream.	2020-08-20722-20.00	2020-08-30723-30.00	N#2		ie⊭e
PQM line 8 current THD too high		ES2,14F,PQM,Busway,28L1,100A,A		energy	ES2-14F	PQM THD Current B + 60% for 2 hours or more when Active Power + 51	av		1. Check load downateram 2. Check integrity of supply upstream.	2020-08-20117-45:00	2020-08-30717:45:00			iowe
PQM power spike		ES3_26F_POM_Burway_38T3		energy	E53-26F	PQM power has increased sharply & dropped down by 100% within 20-	ninutes interval.		1. Check volkage and electrical stabilization system. 2. Check load downatesam. 3. Check electrical supply.	2020-00-20714:00:00	2020-08-30714-30:00			iewe
Terminal Equipment overcooling		ES2_8F_VAV_P010		operation	E52-6F	Terminal equipment overcosiling (+ 14 degree C for 2 hours)			1. Check # VAV Damper is stuck 2. Check Temperature sensor accuracy 2. Check zone temperature control logic	2020-08-20712-00:00	2020-08-30720-15.00	medum		ie⊭e
PQM line B H3 current spike in emper-	e by 100%.	ES2_14F_POM_Reavery_28L1_100A_A		energy	852-147	PQM line current B_HG in amprox has increased sharply & dropped do-	en by 100% within 20 minutes inter		1. Check vohage and electrical stabilization system. 2. Check load downstmem. 2. Check electrical susply.	2020-08-20112-00:00	2020-08-30T17-45:00			iewe
PQM line C H3 current spike in ampen	e by 100%	ES1_8F0_POM_MCOB466_200A		ereryy	651-8FG	PQM line current C_HB in ampose has increased sharply & dropped do-	en by 100% within 20 minutes inter	•	1. Check voltage and electrical stabilization system. 2. Check load downstream. 3. Check electrical supply.	2020-08-20109-20-00	2020-08-20109-20-00			iewe
PQM line C H3 current spike in ampen	e by 100%	ES1_BFF_PQM_MCGB606_200A		erergy	631-8FF	PQM line current C_HI in ampore has increased sharply & dropped do-	en by 100% within 20 minutes inter	*	a. Unick inclusion apppy. 1. Check voltage and electrical stabilization system. 2. Check load downstream. 3. Obeck electrical supply.	2020-08-20109-20.00	2020-08-20109-20.00	~		iewe
												Rows per page: N	5 🔫 5-10 of 897	$\langle \rangle$

0.6

0.5

0.4

Automated Fault Diagnostics and Prediction – Large Shopping Centre Hong Kong

Automatically identified control logic and sensor issues leading to overcooling phenomenon in multiple air side HVAC equipment and visualized them intuitively. Automated reporting lead to proactive issue rectification.

Anomaly model - Fault Detection

Unsupervised Machine Learning engine detects abnormal deviation of data from normal operation pattern. In this example, VSD control is set to a relatively low value however the motorized valve feedback for the AHU is abnormally high. This suggest faulty controls where supply air is still hot although there is less demand from VAVs.

The engine can detect non linear deviations from normal patterns and predict unknown faults before they seriously affect equipment performance or health.

Carnot Innovations |

Anomaly model - Excessive Power Usage

Power anomaly machine learning models

Prescriptive real time controls and savings realization

Digital Twin and power predictions

Cooling Load Forecasts

Real Time Controls & Energy Savings Achieved

	dis	bacnetConnRef	cur	write		his	connTuningRef	bac
•	Chiller_Plant_Chiller_Header CH_Optm_SCHWP_QTY	Bacnet PB_Chiller	📀 1	🥩 1 @ 8	۲	🌏 collect 1min		AV2
	Chiller_Plant_Chiller_Header Chiller_Optim_Request	Bacnet PB_Chiller	🥝 2	🥝 2 @ 8	۲	🥝 collect 1min		AV2
	Chiller_Plant_Chiller_Header DP_SP_Optimization	Bacnet PB_Chiller	🥝 3 psi	🥝 3 @ 8		🥝 collect 1min		AV2
	Chiller_Plant_Chiller_Header Heartbeat	Bacnet PB_Chiller	🥝 95	🥩 95 @ 8	۲	🥝 collect 1min		AV2
0	Chiller_Plant_Chiller_Header Switch_Optimization	Bacnet PB_Chiller	📀 true	📀 null @ def	Θ	📀 collect 1min		BV0
θ	Chiller_Plant_Chiller_Header Switch_Temp_Reset	Bacnet PB_Chiller	📀 true	📀 null @ def	⊜	📀 collect 1min		BV1
θ	Chiller_Plant_Chiller1 CHW5_Setpoint	Bacnet PB_Chiller	📀 7.4 °C	7.4 @ 8	⊜	📀 collect 1min		AV1
0	Chiller_Plant_Chiller1 Comm_Fault	Bacnet PB_Chiller	Normal	0		📀 collect 1min		BIO
0	Chiller_Plant_Chiller1 Priority	Bacnet PB_Chiller	🤣 8	😴 8 @ 8	۲	🌏 collect 1min		AVC
	Chiller_Plant_Chiller2 CHW5_Setpoint	Bacnet PB_Chiller	🌍 7.798 °C	🥝 7.798 @ 8		🥝 collect 1min		AV1
0	Chiller_Plant_Chiller2 Comm_Fault	Bacnet PB_Chiller	Normal	0		📀 collect 1min		BI1

Time Series Prediction of demand

For better staging and peak shifting

Day of week effect where Sunday the Cooling Load is much lesser.

Cooling Load vary by hour of day.

Power Consumption Model of Equipments

Estimate energy consumption under different scenarios

Digital Twins

Energy prediction models for chiller plant equipment are developed to estimate the consumption with new setpoints.

Energy Efficiency Surface

Using the forecasted cooling load and new setpoints, the optimization algorithm identifies the best setpoint combination to achieve highest efficiency. The efficiency surface of a chiller is a 3d variable that is shown here. It depends on the setpoint, the cooling load and OAT.

Al Optimization – Data + Machine Learning + Load Forecast + Optimization Algorithm

Real Time, Data Driven Chiller Plant Optimization

2 Predictive Models + 1 Optimization Algorithm to Achieve the Optimization

2 models to provide us with estimates of

Optimization Algorithm to find the optimal parameters.

Public Infrastructure Facility Chiller Plant Optimization – Hong Kong

Realized 11% Chiller Plant Operational Cost Savings for a public infrastructure building in Hong Kong without additional retro-fits.

Enabled on-going and continuous commissioning for the facility.

ROI = 1.5 Years

Grade A Commercial Building Chiller Plant Optimization – Hong Kong

Improved the Chiller Plant Efficiency of a Grade A Commercial Building by 10% within 3 months of Automated AI Chiller Plant Optimization Deployment.

ROI = 1 Year

International Hospital Chiller Plant Optimization - Thailand

Optimized Chiller Plant Controls and improved over all plant efficiency by 10% while keeping cooling load and humidity within strict design constraints as required by the hospital.

ROI = 10 Months

OUR PROVEN BENEFITS

15% proven reduction in energy costs over existing controls 90% hidden faults uncovered 50% reduction key operation faults

18

Energy Savings > **50,000 USD** per average commercial building* per annum

We are helping companies reduce their **carbon footprint**, meet their **ESG targets** while saving the **environment**!

POWERFUL ALLIES

We are backed by Global Venture Capital Firms.

MTZ

20

The brain behind truly smart buildings

ashish.justin@carnot-innovations.com chris.choy@carnot-innovations.com